·述评·

下肢动脉硬化闭塞症治疗中载药支架的应用现状

卫任,郭伟

(中国人民解放军总医院 血管外科,北京 100853)

摘 要近些年下肢动脉硬化闭塞症的腔内治疗技术迅猛发展。基于传统球囊扩张及金属裸支架植入日益凸显的再狭窄问题,各种载药器械相继推出,载药支架即是其中代表之一。载药支架被大量应用于股腘动脉及膝下动脉疾病,相应的临床试验也广泛开展。载药支架在治疗短段病变的安全性、有效性、优越性已得到较为充分的论证,而在长段病变的价值尚需更多临床试验证实。

关键词 闭塞性动脉硬化;下肢;药物洗脱支架;移植物闭塞,血管

郭伟

下肢动脉硬化闭塞症( lower extr emity atheroscl erotic occlusive disease ,LEASOD)已经成为影响人类健康的高发病之一。据估计,全球约有2亿的人群罹患此病,而且该数字仍在逐年上升[1]。该病最直接的风险在于导致下肢跛行、静息痛,甚至截肢。相应的治疗也主要围绕如何重建病变段动脉的血流而展开。

上世纪后半叶,腔内治疗的兴起为LEASOD的治疗提供了新的微创有效的方法。近20年来,该技术迅猛发展,已成为重建下肢血运的首选方法[2]。然而,腔内术后短期内血管再狭窄的问题也日益凸显,如股腘动脉病变应用金属裸支架(bare mental stent,BMS)1年的再狭窄率达32%~46%,而膝下动脉处的再狭窄率更高[3-4]

导致支架远期再狭窄的主要原因是动脉内膜增生[5]。为此,支架被负载上能够抑制内膜增生的药物,制成载药支架(drug eluting stent,DES)。常用的负载药物有紫杉醇和莫司类药物两大类。前者能够抑制细胞内微管的合成及DNA解聚蛋白酶的激活,后者则通过阻断维持细胞周期的多条信号通路来发挥作用[6-7]。两者孰优孰劣,目前尚未有实验证实。

对于髂动脉病变,应用BMS已可以获得不错的结果[8]。因此临床中DES更多地被用于处理股腘动脉及膝 下动脉病变。本文即对DES在这两处动脉的应用现状分别阐述。

1 DES治疗股腘动脉病变

用于股腘动脉处的DES最初均为BMS直接负载药物制成,且药物浓度主要依据于冠脉DCB,之后逐渐有了支架的改进和药物浓度以及载药方式的调整。相关的临床试验也多为单臂设计,以检验支架的有效性和安全性。

SIROCCO试验率先检验了SMART DES(Cordis)治疗股浅动脉病变的疗效。其所负载药物为西罗莫司。该试验入组长度≤20 cm的股腘病变,并以SMART裸支架作对照。I期试验随访6个月,结果显示两组的支架再狭窄率均为0[9]。II期试验扩大了病例数,并延长随访时间至2年,结果显示DES在再狭窄率、靶病变血运重建(target leisure revascularization,TLR)率,以及踝肱指数、跛行距离改善方面均未有更好的表现[10]。该试验也暴露了前期DES设计的不足,如负载药物浓度低、药物释放时间较短(不足7 d),以及支架断裂率高等问题。

有鉴于此,Dynalink支架(Abbott公司)负载了高浓度依维莫司,且以乙烯醇作聚合媒介,药物持续释放可达3个月之久。STRIDES试验检验了这款支架的效果。该试验为前瞻性单臂设计,入组100例股腘动脉病变患者,平均病变长度(9.0±4.3)cm。1年的随访结果显示此款DES一期通畅率为(68±4.6)%[11]。而相对于之前同款非载药支架治疗同类型病变1年(63±7)%的通畅率[12],其优势并不突出。

COOK 公司则对金属支架进行了改进,将Zilver PTX支架表面预刻了诸多沟槽,紫杉醇负载其中。相应的Zilver PTX随机试验入组了474例患者,平均病变段长度(6.5±4.0)cm。随访1、5年的结果显示DES组一期通畅率分别为83.1%、66.4%,均显著高于(普通球囊±BMS)组。而且,在免于TLR率、临床获益率方面,前者亦优于后者[13-14]。基于此款支架,Miki等[15]报道了支架规格对管腔预后的影响。其结果显示,股浅动脉处DES选择8 mm直径较6 mm,在术后6个月的随访中有更大的管腔面积,由此指出DES支架宜选择大直径规格[15]

作为新一代的DES,Eluvia DES(Boston Scientific)同样负载了紫杉醇,所不同的是其添加了一种含氟乙烯类聚合物涂层,使紫杉醇可持续释放超过9个月之久。同时,这款支架在设计上采取两头闭环、中部开环式设计,以兼顾股浅动脉对支架柔顺性和径向支撑力的要求[16]。MAJESTIC试验对其效果进行了验证,入组57例患者,平均病变长度(70.8±28.1)mm。1年的随访结果显示其一期通畅率可达96%,TLR率为4%,且无支架断裂发生[17]。这是迄今为止DES通畅率最高的报道。受此鼓舞,IMPERIAL试验将通过全球多中心随机对照设计,对比Eluvia和Zilver PTX这两款DES的效果[18]。目前该试验尚在入组阶段。

需指出的是,上述临床试验所选择的病例均为TASCA/B级病变,而实际临床中往往面临的是更为复杂的病变。Lida等[19]报道了Zilver PTX在真实世界应用的结果。其观察了831例股腘病变的病例,平均病变长度(17±10)cm,随访1年的结果显示再狭窄率达37%,重大肢体不良事件(包括截肢及二次手术)发生率及支架内血栓发生率分别为22%和2%。由此可见DES对长段病变(TASC C/D)的效果也不容乐观。

可 降 解 支 架 ( bioresorbable vascular scaffold,BVS)的出现又将掀开LEASOD治疗新的革命。BVS在一定程度上避免了支架对管壁的持续性机械刺激,减少了管壁炎性反应及内膜增生效应[20]。在这类支架上负载抗内膜增生药物,理论上讲会有更好的抗动脉狭窄效果。ESPRIT BVS(Abb ott)即负载了依维莫司,并率先应用于外周血管。相应的ESPRITEⅠ试验纳入35例髂股动脉狭窄病例,平均病变长度(35.7±16.0)mm。其1年及2年的再狭窄率分别为12.1%、16.1%,二次干预率分别为8.8%和11.8%[21]。该结果相对于Eluvia和Zilver PTX的DES并未有显著提高。这可能与支架自身材料有一定关系。Werner等[22]报道同材料的非载药BVS1年的再狭窄率高达67.9%。因此,外周动脉领域载药BVS时代的兴起尚需支架材料的更迭或改进。

2 DES在膝下动脉处应用

普通球囊或BMS在膝下动脉处仍面临相当高的再狭窄率及截肢率,因此该段血管对远期通畅性的追求更为迫切。膝下动脉的直径与冠脉基本匹配,诸多冠脉DES即被直接用于膝下动脉。也得益于DES在冠脉领域的充分发展,用于膝下动脉的DES相关临床试验已不再过多关注产品有效性和安全性问题,而重在关注其相对于其他技术的优劣性问题。

ACHILLES试验对比了Cypher select DES(Cordis)与普通球囊扩张(percutaneous transluminal angioplasty,PTA)治疗膝下病变的效果。Cypher DES负载西罗莫司。该试验以多中心随机对照设计,纳入200例Rutherford 3~5级的患者,平均病变长度为26.8 mm。1年随访结果得出DES组再狭窄率明显低于PTA组(24.4% vs. 41.9%,P<0.05),但在改善症状、降低临床终点(如TLR、截肢)发生率方面,两组并无显著差异[23]

PADI试验则选择负载紫杉醇的TAXUS DES(Boston Scientific),与PTA±BMS进行对比,得出不同的结果。该试验入组140例患者,DES组平均病变长度(23.1±21.8)mm。6个月的随访结果显示DES的通畅率高于(PTA±BMS)(48.0% vs.35.1%,P<0.01) ,且截肢发生率更低(9.8% vs.20.5%,P=0.10),而且这一优势一直持续到术后2年,甚至5年之久[24-25]

DESTINY试验对DES与BMS的效果进行了对比。其所用DES为携载依维莫司的Xience V(Abbott)。DES组平均病变长度仅为(18.9±10.0)mm。12个月的随访结果显示DES有更好的一期通畅率(85% vs. 54%,P=0.0 001)及免于TLR率(91% vs. 66%,P=0.001)[26]。Y UKON-BTK试验则纳入更长范围的病变(平均长度31 mm),选用负载西罗莫司的YUKON(Translumina)DES与BMS做对比。3年的随访结果显示DES有更高的保肢率及生存率[27]

IDEAS试验选择了长段膝下病变,旨在对比DCB(drug coated balloon,DCB)与DES的疗效。该研究DES组平均病变长度达(146±56.7)mm。6个月的随访结果显示,DES组再狭窄率低于DCB组(28% vs. 57.9%,P=0.0457),但在保肢率及患者生存率方面,两组并无统计学差别[28]

以上DES均为球扩式设计。Stentys公司的冠脉Stentys DES也被应用于膝下动脉,这是目前唯一一款用于膝下动脉的自膨式支架。PES-BTK-70试验论证了其治疗膝下病变的效果。该研究为单臂设计,平均病变长度17.2 mm,1年DES通畅率为72.6%,79.1%免于TLR,保肢率98.5%[29]

3 小 结

尽管在LEASOD的腔内治疗中,“leaving nothing behind”已成为重要指导理念,但基于目前的技术水平还很难完全贴合理念。诸多的临床试验已经证实了DES在提高病变动脉远期通畅性的优势,但这些试验都主要基于短段病变的结果,真实世界的LEASOD动脉病变往往复杂许多。DES恰可以作为理念与现实间的一段过渡“桥梁”,在不断的迭代更新中造福患者。

参考文献

[1] Fowkes FG, Rudan D, Rudan I, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis[J]. Lancet,2013, 382(9901):1329–1340. doi: 10.1016/S0140–6736(13)61249–0.

[2] Rooke TW, Hirsch AT, Misra S, et al. Management of patients with peripheral artery disease (compilation of 2005 and 2011 ACCF/AHA Guideline Recommendations): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines[J]. J Am Coll Cardiol, 2013,61(14):1555–1570. doi: 10.1016/j.jacc.2013.01.004.

[3] Lammer J, Zeller T, Hausegger KA, et al. Heparin-bonded covered stents versus bare-metal stents for complex femoropopliteal artery lesions: the randomized VIASTAR trial (Viabahn endoprosthesis with PROPATEN bioactive surface [VIA] versus bare nitinol stent in the treatment of long lesions in superfi cial femoral artery occlusive disease)[J]. J Am Coll Cardiol, 2013, 62(15):1320–1327.doi: 10.1016/j.jacc.2013.05.079.

[4] Krankenberg H, Schlüter M, Steinkamp HJ, et al. Nitinol stent implantation versus percutaneous transluminal angioplasty in superfi cial femoral artery lesions up to 10 cm in length: the femoral artery stenting trial (FAST)[J]. Circulation, 2007, 116(3):285–292.doi: 10.1161/CIRCULATIONAHA.107.689141.

[5] Forrester JS, Fishbein M, Helfant R, et al. A paradigm for restenosis based on cell biology: clues for the development of new preventive therapies[J]. J Am Coll Cardiol, 1991, 17(3):758–769.

[6] Herdeg C, Oberhoff M, Baumbach A, et al. Local paclitaxel delivery for the prevention of restenosis: biological effects and effi cacy in vivo[J]. J Am Coll Cardiol, 2000, 35(7):1969–1976.

[7] Giordano A, Romano A. Inhibition of human in-stent restenosis: a molecular view[J]. Curr Opin Pharmacol, 2011, 11(4): 372–377.doi: 10.1016/j.coph.2011.03.006.

[8] Javed U, Balwanz CR, Armstrong EJ, et al. Mid-term outcomes following endovascular re-intervention for iliac artery in-stent restenosis[J]. Catheter Cardiovasc Interv, 2013, 82(7):1176–1184.doi: 10.1002/ccd.24975.

[9] Duda SH, Pusich B, Richter G, et al. Sirolimus-eluting stents for the treatment of obstructive superfi cial femoral artery disease: sixmonth results[J]. Circulation, 2002, 106(12):1505–1509.

[10] Duda SH, Bosiers M, Lammer J, et al. Drug-eluting and bare nitinol stents for the treatment of atherosclerotic lesions in the superfi cial femoral artery: long-term results from the SIROCCO trial[J]. J Endovasc Ther, 2006, 13(6):701–710. doi: 10.1583/05–1704.1.

[11] Lammer J, Bosiers M, Zeller T, et al. First clinical trial of nitinol self-expanding everolimus-eluting stent implantation for peripheral arterial occlusive disease[J]. J Vasc Surg, 2011, 54(2):394–401. doi:10.1016/j.jvs.2011.01.047.

[12] Schillinger M, Sabeti S, Loewe C, et al. Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery[J]. N Engl J Med, 2006, 354(18): 1879–1888. doi: 10.1056/NEJMoa051303.

[13] Dake MD, Ansel GM, Jaff MR, et al. Durable Clinical Effectiveness With Paclitaxel-Eluting Stents in the Femoropopliteal Artery: 5-Year Results of the Zilver PTX Randomized Trial[J]. Circulation, 2016, 133(15):1472–1483. doi: 10.1161/CIRCULATIONAHA.115.016900.

[14] Dake MD, Ansel GM, Jaff MR, et al. Paclitaxel-eluting stents show superiority to balloon angioplasty and bare metal stents in femoropopliteal disease: twelve-month Zilver PTX randomized study results[J]. Circ Cardiovasc Interv, 2011, 4(5):495–504. doi:10.1161/CIRCINTERVENTIONS.111.962324.

[15] Miki K, Fujii K, Shibuya M, et al. Impact of stent diameter on vascular response after self-expanding paclitaxel-eluting stent implantation in the superficial femoral artery[J]. J Cardiol, 2017,70(4): 346–352. doi: 10.1016/j.jjcc.2016.12.011.

[16] Müller-Hülsbeck S. Eluvia™ peripheral stent system for the treatment of peripheral lesions above the knee[J]. Expert Opin Drug Deliv, 2016, 5:1–6. doi: 10.1080/17425247.2016.1230098.

[17] Müller-Hülsbeck S, Keirse K, Zeller T, et al. Twelve-Month Results From the MAJESTIC Trial of the Eluvia Paclitaxel-Eluting Stent for Treatment of Obstructive Femoropopliteal Disease[J]. J Endovasc Ther, 2016, 23(5):701–707. doi: 10.1177/1526602816650206.

[18] Boston Scientific Corporation; Marlborough, MA. ELUVIA drugeluting stent versus Zilver PTX stent (IMPERIAL).In:ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2016 Nov 4]. Available from:clinicaltrials.gov/ct2/show/NCT02574481 NLM Identifier:NCT02574481.

[19] Iida O, Takahara M, Soga Y, et al. 1-Year Results of the ZEPHYR Registry (Zilver PTX for the Femoral Artery and Proximal Popliteal Artery): Predictors of Restenosis[J]. JACC Cardiovasc Interv, 2015,8:1105–1112. doi: 10.1016/j.jcin.2015.03.022.

[20] Qiu T, He R, Abunassar C, et al. Effect of two-year degradation on mechanical interaction between a bioresorbable scaffold and blood vessell[J]. J Mech Behav Biomed Mater, 2018, 78:254–265. doi:10.1016/j.jmbbm.2017.11.031.

[21] Lammer J, Bosiers M, Deloose K, et al. Bioresorbable Everolimus-Eluting Vascular Scaffold for Patients With Peripheral Artery Disease (ESPRIT I): 2-Year Clinical and Imaging Results[J].JACC Cardiovasc Interv, 2016, 9(11):1178–1187. doi: 10.1016/j.jcin.2016.02.051.

[22] Werner M, Micari A, Cioppa A, et al. Evaluation of the biodegradable peripheral Igaki-Tamai stent in the treatment of de novo lesions in the superfi cial femoral artery: the GAIA study [J].JACC Cardiovasc Interv, 2014, 7(3):305–312. doi: 10.1016/j.jcin.2013.09.009.

[23] Scheinert D, Katsanos K, Zeller T, et al. A prospective randomized multicenter comparison of balloon angioplasty and infrapopliteal stenting with the sirolimus-eluting stent in patients with ischemic peripheral arterial disease: 1-year results from the ACHILLES trial[J]. J Am Coll Cardiol, 2012, 60(22):2290–2295. doi: 10.1016/j.jacc.2012.08.989.

[24] Spreen MI, Martens JM, Hansen BE, et al. Percutaneous Transluminal Angioplasty and Drug-Eluting Stents for Infrapopliteal Lesions in Critical Limb Ischemia (PADI) Trial[J].Circ Cardiovasc Interv, 2016, 9(2):e002376. doi: 10.1161/CIRCINTERVENTIONS.114.002376.

[25] Spreen MI, Martens JM, Knippenberg B, et al. Long-Term Followup of the PADI Trial: Percutaneous Transluminal Angioplasty Versus Drug-Eluting Stents for Infrapopliteal Lesions in Critical Limb Ischemia[J]. J Am Heart Assoc, 2017, 6(4). pii: e004877. doi:10.1161/JAHA.116.004877.

[26] Bosiers M, Scheinert D, Peeters P, et al. Randomized comparison of everolimus-eluting versus bare-metal stents in patients with critical limb ischemia and infrapopliteal arterial occlusive disease[J]. J Vasc Surg, 2012, 55(2):390–398. doi: 10.1016/j.jvs.2011.07.099.

[27] Rastan A, Brechtel K, Krankenberg H, et al. Sirolimus-eluting stents for treatment of infrapopliteal arteries reduce clinical event rate compared to bare-metal stents: long-term results from a randomized trial[J]. J Am Coll Cardiol, 2012, 60(7):587–591. doi: 10.1016/j.jacc.2012.04.035.

[28] Siablis D, Kitrou PM, Spiliopoulos S, et al. Paclitaxel-coated balloon angioplasty versus drug-eluting stenting for the treatment of infrapopliteal long-segment arterial occlusive disease: the IDEAS randomized controlled trial[J]. JACC Cardiovasc Interv, 2014,7(9):1048–1056. doi: 10.1016/j.jcin.2014.04.015.[29] Bosiers M, Callaert J, Keirse K, et al. One-Year Outcomes of the Paclitaxel-Eluting, Self-Expanding Stentys Stent System in the Treatment of Infrapopliteal Lesions in Patients With Critical Limb Ischemia[J]. J Endovasc Ther, 2017, 24(3):311–316. doi:10.1177/1526602817697319.

Application status of drug-eluting stent in treatment of lower extremity arterial occlusive disease

WEI Ren, GUO Wei
(Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing 100853, China)

Abstract The techniques of endovascular treatment for arteriosclerotic occlusive disease of lower limbs have developed rapidly in recent years. With the concern of restenosis after the traditional balloon dilatation and metal bare stent implantation looming large, various kinds of drug-carrying apparatus have been developed, and the drug eluting stent (DES) is a typical one among them. DES has been widely used in the treatment of femoropopliteal and below-the-knee arterial diseases, and relative clinical trials have also been widely conducted. The safety, efficacy and superiority of DES in treatment of short-segment lesions have been well demonstrated, while its value in treating long-segment lesions still needs to be verifi ed by further clinical trials.

Key words Arteriosclerosis Obliterans; Lower Extremity; Drug-Eluting Stents; Graft Occlusion, Vascular

CLC number:R654.3

doi:10.3978/j.issn.1005-6947.2018.06.002

http://dx.

doi.org/10.3978/j.issn.1005-6947.2018.06.002

Chinese Journal of General Surgery, 2018, 27(6):674-678.

中图分类号:R654.3

收稿日期:2018-03-20;

修订日期:2018-05-04。

作者简介:郭伟,中国人民解放军总医院主任医师,主要从事血管疾病的临床、科研、教学和保健方面的研究。

通信作者:郭伟, Email: guowei@301hospital.com

(本文编辑 宋涛)

本文引用格式:卫任, 郭伟. 下肢动脉硬化闭塞症治疗中载药支架的应用现状[J]. 中国普通外科杂志, 2018, 27(6):674-678.

doi:10.3978/j.issn.1005-6947.2018.06.002

Cite this article as: Wei R, Guo W. Application status of drugeluting stent in treatment of lower extremity arterial occlusive disease[J]. Chin J Gen Surg, 2018, 27(6):674-678. doi:10.3978/j.issn.1005-6947.2018.06.002