CARMA3在胆管癌细胞中的表达及功能

贺林华1,华颂文2,李劲东3

(1. 湖南司法警官职业学院,湖南 长沙 410131;2. 中南大学湘雅二医院 普通外科,湖南 长沙 410011;3. 中南大学湘雅医院 普通外科,湖南 长沙410008)

摘 要 目的:探讨接头蛋白CARMA3在胆管癌细胞中的表达及功能。

方法:用qRT-PCR技术检测胆管癌HUCCT1细胞与RBE细胞以及正常胆管细胞HIBEC中CARMA3的mRNA表达。用siRNA技术沉默HUCCT1细胞与RBE细胞中CARMA3的表达后,分别通过CCK-8法、流式细胞术、Transwell实验检测细胞增殖、凋亡、细胞周期以及转移和侵袭能力的变化。

结果:两种胆管癌细胞中CARMA3的mRNA表达水平均明显高于正常胆管细胞HIBEC(HUCCT1 vs.HIBEC:t=5.321,P=0.011;RBE vs. HIBEC:t=5.932,P=0.008)。沉默 CARMA3的表达后,两种胆管癌细胞的增殖、转移和细胞侵袭能力被明显抑制,G1期阻滞明显增加,细胞凋亡率明显升高(均P<0.05)。

结论:CARMA3在胆管癌细胞中表达上调,其作用可能与促进细胞增殖、侵袭、转移并抑制细胞凋亡。

关键词 胆管肿瘤;CARD信号接头蛋白质类;细胞增殖;细胞凋亡;肿瘤侵润

胆管癌的诊断和治疗一直是医学界的一大难题。多数患者在诊断早期即发生广泛浸润和远处转移,此外,胆管癌极易发生多重耐药抵抗,导致胆管癌患者预后极差,其5年生存率不足5%[1-4]。胆管癌的的进展涉及复杂的基因及表观遗传改变[5-8]。因此,为了寻找新的有效的治疗方法,有必要进一步揭示胆管癌发生发展的分子机制。

CARMA3是半胱天冬酶募集域(caspase recruitment domain,CARD)和膜相关的鸟苷酸激酶样域(membrane-associated guanylate kinase-like domain,GUK)基因,是CARMA家族成员之一[9-11]。研究表明,CARMA3在乳腺癌[12]、卵巢癌[13]、结肠癌[14]和肾癌[15]等肿瘤中表达异常上调,并促进肿瘤细胞的增殖、侵袭、转移。然而,CARMA3在胆管癌组织中的表达及功能,尚无研究报道。因此,本研究拟利用qPCR、流式细胞术等方法检测CARMA3在胆管癌细胞中的表达及功能,研究有望为胆管癌的靶向治疗奠定理论基础。

1 材料与方法

1.1 实验材料

RPMI-1640培养液(美国HyClone),青霉素-链霉素双抗(美国HyClone),胎牛血清(美国Gibco)。反转录及RNA提取试剂盒(天根生化科技有限公司),qRT-PCR所应用的Real Master Mix试剂盒(天根生化科技有限公司)。FITC标记的Annexin-V抗体及PI染料试剂盒(美国Biolegend)。液氮灌(美国Thermo),细胞培养箱(美国Thermo),Transwell小室(美国Millipore),基质胶(美国BD),ABI 7900型PCR仪(美国ABI),BD FACS Calibur流式细胞仪(美国BD)。人胆管癌细胞系HUCCT1、RBE,正常胆管细胞系HIBEC购买于中科院上海细胞库。

1.2 实验方法

1.2.1 细胞培养 人胆管癌细胞系HUCCT1、RBE和正常胆管细胞系HIBEC用含10%浓度胎牛血清及1%浓度的青霉素-链霉素双抗的RPMI-1640培养基,所有细胞均置于37 ℃、5%浓度的CO2细胞培养箱中进行培养,细胞汇合度值80%后传代。

1.2.2 RNA提取 TRIzol裂解人胆管癌组织或细胞系,加入1/5体积氯仿,震荡14 s。4 ℃,12 000 r/min离心15 min,吸取水相层,而后加入等体积的异丙醇,混匀后静置10 min。4 ℃,12 000 r/min离心10 min,弃去上清,所得胶状沉淀即为RNA。

1.2.3 荧光实时定量聚合酶链反应(qRT-PCR)

将RNA反转录为cDNA作为模板。而后加入125 μL的 20×SYBR 溶 液 至 1.0 mL 2.5x Real Master Mix中,所得溶液作为试剂A。实验采用20 μL 体系,内还有 9 μL 试剂 A,1 μL 20×ROX Reference Dye ,1 μL 正向引物,1 μL 反向引物,cDNA模板 2 μL,6 μL去离子水。qRT-PCR的反应条件为:95 ℃ 2 min;95 ℃ 20 s,60 ℃ 20 s,72 ℃ 30 s,共35个循环。CARMA3正向引物序列为:5'-TCT TCC ACC GTT GCC AAT CT-3';负向引物序列为:5'-TTC GCC TGC CAG GAA CAT C-3'。

1.2.4 细 胞 转 染 0.5×106胆 管 癌 HUCCT1或RBE细胞铺6孔板,过夜培养至50%汇合度,5 μL CARMA3 siRNA或阴性对照序列(30 pmol)稀释至250 μL无血清培养基,5 μL转染试剂lipo2000稀释至250 μL无血清培养基,两者混合室温孵育20 min。将混合物加入胆管癌细胞中,6 h后更换为完全培养基。48 h行荧光实时定量PCR检测沉默效率,并进行后续功能学试验。

1.2.5 CCK-8法检测细胞增殖 取对数生长期的人胆管癌细胞,制备为单细胞悬液,以2.0×103/孔的细胞密度接种于96孔板中,每组实验设8个复孔,分别培养1~5 d,各孔中加入10 μL CCK-8试剂 ,培养1 h后,在450 nm波长处测定吸光度值,所得数据作为第1天的OD值。而后每天在同一时间 再次加入CCK-8试剂培养1 h后测定吸光度值,根据5 d内各组所得OD值绘制细胞增殖曲线。

1.2.6 流式细胞术检测细胞凋亡和周期 取对数生长期的人胆管癌细胞,制备为单细胞悬液。10 mL PBS,1 000 r/min离心10 min,反复洗涤3次,弃去上清;若检测细胞周期则在各组细胞中加入 100 μL 流式洗液和 PI(50 μg/mL)5 μL 或同型对照抗体,避光反应15 min后。尼龙膜过滤细胞,除去细胞团块后,立即利用BD FACS Calibur流式细胞仪检测。若检测细胞凋亡则在清洗细胞后加入 FITC标记的 Annexin-V(20 ug/mL)10 μL及再加入 PI(50 μg/mL)5 μL 或 Annexin-V 及 PI的同型对照抗体,避光反应15 min。尼龙膜过滤细胞,除去细胞团块后,立即利用BD FACS Calibur流式细胞仪检测。

1.2.7 Transwell检测细胞侵袭及转移 细胞转移步骤简述如下:取对数生长期的人胆管癌细胞,制备单细胞悬液,细胞计数后,将2万个细胞铺于已加入190 μL无血清培养基的上室中,下室中加入600 μL含10%血清的1640培养基,每组设3个复孔,48 h后用棉签擦去上层未穿过小室的细胞,95%酒精固定10 min,1%结晶紫染色5 min。显微镜下随机区十个视野,统计每个视野下的细胞数后取平均值 。细胞侵袭步骤大体同上,区别在于预先在Transwell小室上层铺基质胶。实验重复3次后,统计3次试验中各组穿过Transwell小室的细胞数的平均值及标准差,分析CARMA3 siRNA组与阴性对照组组侵袭及转移细胞数差异。

1.3 统计学处理

所有数据采用IBM SPSS statistic 22.0进行统计分析,数据以均数±标准差(x±s)表示,两组间增殖差异比较采用方差分析,两组间其他指标差异的比较采用t检验,P<0.05为差异有统计学意义。

2 结 果

2.1 CARMA3 mRNA在胆管癌细胞系中的表达

qRT-PCR结果显示:设CARMAR3 mRNA在正常胆管细胞系HIBEC中的相对表达量为1,在胆管癌细胞RBE中的相对表达量为3.722±0.193,在胆管癌细胞HUCCT1中的相对表达量为4.913±0.117。方差分析结果显示,3组间CARMA3表达差异有统计学意义(F=18.324,P=0.015)(图1)。t检验结果显示,CARMA3在HUCCT1和HIBEC两组间及RBE与HIBEC两组间的表达差异有统计学意义(HUCCT1 vs. HIBEC:t=5.321,P=0.011;RBE vs. HIBEC:t=5.932,P=0.008),胆管癌细胞中CARMA3的表达水平高于正常胆管细胞系。

图1 CARMA3 mRNA在胆管癌细胞及正常胆管细胞中的相对表达量
Figure 1 The relative expression levels of CARMA3 mRNA in cholangiocarcinoma cells and normal bile duct epithelial cells

2.2 CARMA3-siRNA在胆管癌细胞中的沉默效率

qRT-PCR结果显示:设转染CARMA3-阴性对照序列的胆管癌细胞HUCCT1和RBE CARMA3 mRNA相对表达水平为1,转染CARMA3-siRNA的胆管癌细胞HUCCT1和RBE中CARMA3的相对表达水平分别为0.438±0.082和0.311±0.037,经t检验,阴性对照组与CARMA3-siRNA组间CARMA3表达水平差异具有统计学意义(HUCCT1:t=3.226,P=0.036;RBE:t=4.171,P=0.027)(图2)。

图2 CARMA3-siRNA在胆管癌细胞中的沉默效率
Figure 2 Silence efficiency of CARMA3-siRNA in cholangiocarcinoma cells

2.3 CARMA3对胆管癌细胞增殖的影响

CCK-8结果显示,自转染后第2日起转染CARMA3-阴性对照序的HUCCT1和RBE细胞OD值明显高于CARM3-siRNA组。经方差分析,两组的细胞增殖水平差异具有统计学意义(HUCCT1:F=14.543,P=0.007;RBE:F=9.543,P=0.012)(图3)。

图3 CARMA3基因沉默对胆管癌细胞增殖的影响
Figure 3 Effect of CARMAE gene silencing on proliferation of cholangiocarcinoma cells

2.4 CARMA3对胆管癌细胞凋亡的影响

流式细胞术检测凋亡结果显示:转染CARMA3-阴性对照序的HUCCT1和RBE细胞早期凋亡细胞比例为(1.321±0.155)%和(1.923±0.124)%,转染CARMA3-siRNA的HUCCT1和RBE细胞早期凋亡细胞比例为(13.235±2.515)%和(10.872±2.324)%。经t检验,两组的细胞凋亡细胞比例差异具有统计学意义(HUCCT1:t=5.843,P=0.017;RBE:t=4.712,P=0.021)(图4)。

图4 CARMA3基因沉默对胆管癌细胞凋亡的影响
Figure 4 Effect of CARMAE gene silencing on apoptosis in cholangiocarcinoma cells

2.5 CARMA3对胆管癌细胞周期的影响

流式细胞术检测周期结果显示:转染CARMA3-阴性对照序的HUCCT1和RBE细胞G1期细胞比例为(54.323±5.321)%和(45.322±4.123)%,转染CARMA3-siRNA的HUCCT1和RBE细胞G1期细胞比例为(70.727±4.319)%和(63.342±5.552)%。经t检验,两组的细胞G1期细胞差异具有统计学意义(HUCCT1:t=3.279,P=0.038;RBE:t=3.413,P=0.035)(图5)。

2.6 CARMA3对胆管癌细胞迁移能力的影响

Transwell细胞迁移结果显示:转染CARMA3-阴性对照序的HUCCT1和RBE细胞转移细胞数目为133.239±32.529和121.394±24.642,转染CARMA3-siRNA的HUCCT1和RBE细胞转移细胞数目为54.325±23.105和42.195±10.423。经t检验,两组的转移细胞数目差异具有统计学意义(HUCCT1:t=3.519,P=0.032;RBE:t=3.761,P=0.029)(图6)。

2.7 CARMA3对胆管癌细胞侵袭的影响

Transwell细胞侵袭结果显示:转染CARMA3-阴性对照序的HUCCT1和RBE细胞侵袭细胞数目为94.541±28.532和65.176±23.541,转染CARMA3-siRNA的HUCCT1和RBE细胞侵袭细胞数目为35.819±15.394和31.571±14.562。经t检验,两组的侵袭细胞数目差异具有统计学意义(HUCCT1:t=4.642,P=0.025;RBE:t=3.547,P=0.034)(图7)。

图5 CARMA3基因沉默对胆管癌细胞细胞周期的影响
Figure 5 Effect of CARMAE gene silencing on cell cycle in cholangiocarcinoma cells

图6 CARMA3基因沉默对胆管癌细胞转移的影响
Figure 6 Effect of CARMAE gene silencing on cell migration in cholangiocarcinoma cells

图7 CARMA3基因沉默对胆管癌细胞侵袭的影响
Figure 7 Effect of CARMAE gene silencing on invasion in cholangiocarcinoma cells

3 讨 论

本研究通过qRT-PCR检测了CARMA3在胆管癌细胞系及正常胆管细胞系中的表达水平差异,结果显示CARMA3在胆管癌细胞系中的表达水平显著上调。而后利用CCK-8、流式细胞术和Transwell实验检测了CARMA3对胆管癌细胞增殖、凋亡、周期、侵袭及转移的影响。结果显示沉默胆管癌细胞中CARMA3的表达,可促进胆管癌细胞凋亡,抑制细胞增殖、侵袭及转移,并阻滞细胞周期于G1期。本研究结果提示CARMA3在胆管癌发生进展中发挥致癌基因的作用。

CARMA3是细胞支架蛋白,在多种肿瘤细胞中均可促进细胞增殖、侵袭及转移,如膀胱癌[16]、肺癌[17]等。与既往研究一致,本研究结果亦显示,CARMA3可促进胆管癌细胞增殖、侵袭及转移,并抑制细胞凋亡。既往机制研究结果显示EGFR和GPCR可诱导细胞形成由CARMA3及其下游信号分子BCL10和MALT1组成的复合体[18],并进一步活化IKK。IKK可诱导I-κB的降解,从而活化NF-κB,并与DNA结合促进靶基因的转录[19]。此外,被活化的NF-κB可促进超过150个靶基因转录,包括大量在细胞增殖、成管、转移、凋亡、和化疗抵抗的基因,是潜在的治疗靶点[20]。研究表明抑制NF-κB通路可导致细胞周期阻滞[21],侵袭转移能力下降[22]。更为重要的是,研究[23]显示NF-κB在胆管癌中表达异常上调,抑制NF-κB可在体内和体外水平降低胆管癌细胞的增殖能力,并促进胆管癌细胞对化疗药物的敏感性。因CARMA3可活化NF-κB通路,且NF-κB通路可促进胆管癌的增殖及化疗抵抗。而本研究中发现,CARMA3在胆管癌细胞中高表达,并可促进胆管癌细胞增殖和转移。因此,笔者认为CARMA3可能是通过活化NF-κB而发挥其致癌分子作用,从而促进胆管癌细胞增殖、侵袭及转移。考虑到NF-κB在胆管癌细胞化疗抵抗中同样发挥着重要作用[23-25],而CARMA3又与NF-κB通路存在着密切的关系,因此,笔者拟在后续研究中进一步探讨CARMA3与胆管癌细胞化疗抵抗之间的关系,更深入探索CARMA3与NF-κB通路之间的关系。

综上,本研究通过qRT-PCR、CCK-8、流式细胞术、及Transwell实验证实CARMA3在胆管癌细胞中表达上调,并可促进胆管癌细胞增殖、转移、侵袭,并抑制细胞凋亡。CARMA3发挥癌基因作用的具体分子机制及其在化疗抵抗方面的功能仍需进一步的研究明确。本研究结果提示CARMA3在胆管癌中为潜在的致癌分子,可能是潜在的治疗靶点。

参考文献

[1]郑启忠, 申九妹, 熊共鹏, 等. 辣椒素提高胆管癌细胞对5氟尿嘧啶的敏感性[J]. 实用医学杂志, 2017, 33(22):3714–3718.doi:10.3969/j.issn.1006–5725.2017.22.009.Zheng QZ, Shen JM, Xiong GP, et al. Enhancement of sensitivity of cholangouraine cells to 5 fluorouracil by capsaicin[J]. The Journal of Practical Medicine, 2017, 33(22):3714–3718. doi:10.3969/j.issn.1006–5725.2017.22.009.

[2]张文君, 陈燕, 潘勐. 原发性肝癌合并癌栓的研究进展[J].中国普通外科杂志, 2015, 24(7):1017–1021. doi:10.3978/j.issn.1005–6947.2015.07.018.Zhang WJ, Chen Y, Pan M. Research progress in primary liver cancer with tumor thrombus[J]. Chinese Journal of General Surgery,2015, 24(7):1017–1021. doi:10.3978/j.issn.1005–6947.2015.07.018.

[3]晏益核, 黄玉斌, 蔡小勇. 肝门部胆管癌的外科治疗现状[J]. 中国普通外科杂志, 2017, 26(2):246–251. doi:10.3978/j.issn.1005–6947.2017.02.019.Yan YH, Huang YB, Cai XY. Current status in surgical management of hilar holangiocarcinoma[J]. Chinese Journal of General Surgery,2017, 26(2):246–251. doi:10.3978/j.issn.1005–6947.2017.02.019.

[4]项灿宏, 童翾. 肝门部胆管癌外科治疗的进展与争议[J]. 中国普通外科杂志, 2018, 27(2):137–142. doi:10.3978/j.issn.1005–6947.2018.02.001.Xiang CH, Tong X. Surgical treatment of hilar cholangiocarcinoma:progress and controversy[J]. Chinese Journal of General Surgery,2018, 27(2):137–142. doi:10.3978/j.issn.1005–6947.2018.02.001.

[5]梁珊凤, 李春艳, 黎昭兰, 等. 沉默EZH2表达抑制胆管癌QBC939细胞增殖及其机制[J]. 实用医学杂志, 2017, 33(10):1584–1588.doi:10.3969/j.issn.1006–5725.2017.10.014.Liang SF, Li CY, Li ZL, et al. Inhibitory effects of silencing EZH2 gene expression on cell proliferation of cholangiocarcinoma QBC939cell line and its mechanisms[J]. The Journal of Practical Medicine, 2017, 33(10):1584–1588. doi:10.3969/j.issn.1006–5725.2017.10.014.

[6]苏进, 邓小峰, 刘波, 等. Notch信号通路在胆管癌中的研究进展[J]. 中国普通外科杂志, 2015, 24(8):1175–1180. doi:10.3978/j.issn.1005–6947.2015.08.024.Su J, Deng XF, Liu B, et al. Notch signaling pathway in cholangiocarcinoma: recent progress[J]. Chinese Journal of General Surgery, 2015, 24(8):1175–1180. doi:10.3978/j.issn.1005–6947.2015.08.024.

[7]郑兵兵, 付晓伟, 陈海敏, 等. 靶向Xklp2靶蛋白在胆管癌组织中的表达及其临床意义[J]. 中国普通外科杂志, 2018, 27(2):199–203. doi:10.3978/j.issn.1005–6947.2018.02.011.Zheng BB, Fu XW, Chen HM, et al. Expression of targeting protein for xenopus kinesin-like protein 2 in cholangiocarcinoma and its clinical significance[J]. Chinese Journal of General Surgery, 2018,27(2):199–203. doi:10.3978/j.issn.1005–6947.2018.02.011.

[8]康强, 邹浩, 刘立鑫, 等. Snail在肝内胆管癌中的表达及其临床意义[J]. 中国普通外科杂志, 2017, 26(2):199–204. doi:10.3978/j.issn.1005–6947.2017.02.011.Kang Q, Zou H, Liu LX, et al. Snail expression in intrahepatic cholangiocarcinoma and its clinical significance[J]. Chinese Journal of General Surgery, 2017, 26(2):199–204. doi:10.3978/j.issn.1005–6947.2017.02.011.

[9]Jiang C, Zhou Z, Quan Y, et al. CARMA3 Is a Host Factor Regulating the Balance of Inflammatory and Antiviral Responses against Viral Infection[J]. Cell Rep, 2016, 14(10):2389–2401. doi:10.1016/j.celrep.2016.02.031.

[10]Causton B, Pardo-Saganta A, Gillis J, et al. CARMA3 Mediates Allergic Lung Inflammation in Response to Alternaria alternata[J].Am J Respir Cell Mol Biol, 2018, doi: 10.1165/rcmb.2017–0181OC. [Epub ahead of print]

[11]Causton B, Ramadas RA, Cho JL, et al. CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation[J]. J Immunol.2015,195(2):683–694. doi: 10.4049/jimmunol.1402983.

[12]Ekambaram P, Lee JL, Hubel NE, et al. The CARMA3-Bcl10-MALT1 Signalosome Drives NFκB Activation and Promotes Aggressiveness in Angiotensin II Receptor-Positive Breast Cancer[J]. Cancer Res, 2018, 78(5):1225–1240. doi: 10.1158/0008–5472.CAN-17–1089.

[13]Xie C, Han Y, Fu L, et al. Overexpression of CARMA3 is associated with advanced tumor stage, cell cycle progression, and cisplatin resistance in human epithelial ovarian cancer[J]. Tumour Biol, 2014, 35 (8):7957–7964. doi: 10.1007/s13277–014–2070–2.

[14]Wang L, Qian L, Li X, et al. MicroRNA-195 inhibits colorectal cancer cell proliferation, colony-formation and invasion through targeting CARMA3[J]. Mol Med Rep, 2014, 10(1):473–478. doi:10.3892/mmr.2014.2178.

[15]Wu GL, Yuan JL, Huang XD, et al. Evaluating the expression of CARMA3 as a prognostic tumor marker in renal cell carcinoma[J].Tumour Biol, 2013, 34(6):3431–3435. doi: 10.1007/s13277–013–0917–6.

[16]Zhang S, Zhang C, Liu W, et al. MicroRNA-24 upregulation inhibits proliferation, metastasis and induces apoptosis in bladder cancer cells by targeting CARMA3[J]. Int J Oncol, 2015, 47(4):1351–1360.doi: 10.3892/ijo.2015.3117.

[17]Chang YW, Chiu CF, Lee KY, et al. CARMA3 Represses Metastasis Suppressor NME2 to Promote Lung Cancer Stemness and Metastasis[J]. Am J Respir Crit Care Med, 2015, 192(1):64–75. doi:10.1164/rccm.201411–1957OC.

[18]Zhang S, Pan D, Jia XM, et al. The CARMA3-BCL10-MALT1(CBM) complex contributes to DNA damage-induced NF-kappaB activation and cell survival[J]. Protein Cell, 2017, 8(11):856–860.doi: 10.1007/s13238–017–0441–3.

[19]Xia ZX, Li ZX, Zhang M, et al. CARMA3 regulates the invasion,migration, and apoptosis of non-small cell lung cancer cells by activating NF-small ka, CyrillicB and suppressing the P38 MAPK signaling pathway[J]. Exp Mol Pathol, 2016, 100 (2):353–360. doi:10.1016/j.yexmp.2015.10.004.

[20]Durand JK, Baldwin AS. Targeting IKK and NF-κB for Therapy[J].Adv Protein Chem Struct Biol, 2017, 107:77–115. doi: 10.1016/bs.apcsb.2016.11.006.

[21]Puthdee N, Seubwai W, Vaeteewoottacharn K, et al. Berberine Induces Cell Cycle Arrest in Cholangiocarcinoma Cell Lines via Inhibition of NF-kappaB and STAT3 Pathways[J]. Biol Pharm Bull,2017, 40(6):751–757. doi: 10.1248/bpb.b16–00428.

[22]Saengboonmee C, Seubwai W, Cha'on U, et al. Metformin Exerts Antiproliferative and Anti-metastatic Effects Against Cholangiocarcinoma Cells by Targeting STAT3 and NF-ĸB[J]. Anticancer Res, 2017, 37(1):115–123. doi: 10.21873/anticanres.11296.

[23]Seubwai W, Vaeteewoottacharn K, Kraiklang R, et al. Inhibition of NF-κB Activity Enhances Sensitivity to Anticancer Drugs in Cholangiocarcinoma Cells[J]. Oncol Res, 2016, 23(1/2):21–28. doi:10.3727/096504015X14424348426071.

[24]Mathema VB, Chaijaroenkul W, Karbwang J, et al. Growth inhibitory effect of β-eudesmol on cholangiocarcinoma cells and its potential suppressive effect on heme oxygenase-1 production,STAT1/3 activation, and NF-κB downregulation[J]. Clin Exp Pharmacol Physiol, 2017, 44(11):1145–1154. doi: 10.1111/1440–1681.12818.

[25]Zhang FH, Ren HY, Shen JX, et al. Magnolol suppresses the proliferation and invasion of cholangiocarcinoma cells via inhibiting the NF-κB signaling pathway[J]. Biomed Pharmacother,2017, 94:474–480. doi: 10.1016/j.biopha.2017.07.085.

CARMA3 expression in cholangiocarcinoma cells and its function

HE Linhua1, HUA Songwen2, LI Jindong3

(1. Hunan Judicial Police Vocational College, Changsha 410131, China; 2. Department of General Surgery, the Second Xiangya Hospital,Central South University, Changsha 410011, China; 3: Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China)

Abstract Objective: To investigate the expression of the adaptor protein CARMA3 in cholangiocarcinoma cells and its function.

Methods: The expressions of CARMA3 mRNA in cholangiocarcinoma HUCCT1 and RBE cells as well as in normal biliary epithelia cell line HIBEC were determined by qRT-PCR. After silencing the expression of CARMA3 with siRNA technique, the changes in proliferation, apoptosis, cell cycle and abilities of migration and invasion in HUCCT1 and RBE cells were examined by CCK-8 assay, flow cytometry and Transwell assay,respectively.

Results: The expression levels of CARMA3 mRNA were significantly increased in both cholangiocarcinoma cell lines compared with normal biliary epithelia cell line HIBEC (HUCCT1 vs. HIBEC: t=5.321, P=0.011; RBE vs.HIBEC: t=5.932, P=0.008). In both cholangiocarcinoma cell lines after silencing the expression of CARMA3,the abilities of proliferation, metastasis and invasion were significantly inhibited, and the G1-phase arrest and apoptosis rates were significantly increased (all P<0.05).

Conclusion: CARMA3 is up-regulated in cholangiocarcinoma cells, and its actions may be associated with promoting cell proliferation, migration and invasion, and inhibiting cell apoptosis.

Key words Bile Duct Neoplasms; CARD Signaling Adaptor Proteins; Cell Proliferation; Apoptosis; Neoplasm Invasiveness

中图分类号:R735.8

收稿日期:2018-05-13;

修订日期:2018-07-19。

作者简介:贺林华,湖南司法警官职业学院讲师,主要从事医学临床教育方面的研究。

通信作者:华颂文, Email∶ 58398285@qq.com

doi:10.3978/j.issn.1005-6947.2018.08.009

http://dx.doi.org/10.3978/j.issn.1005-6947.2018.08.009

Chinese Journal of General Surgery, 2018, 27(8):1007-1013.

CLC number: R735.8

(本文编辑 姜晖)

本文引用格式:贺林华, 华颂文, 李劲东. CARMA3在胆管癌细胞中的表达及功能[J]. 中国普通外科杂志, 2018, 27(8):1007-1013.doi:10.3978/j.issn.1005-6947.2018.08.009

Cite this article as: He LH, Hua SW, Li JD. CARMA3 expression in cholangiocarcinoma cells and its function[J]. Chin J Gen Surg, 2018,27(8):1007-1013. doi:10.3978/j.issn.1005-6947.2018.08.009