·基础研究·
方法:利用TCGA数据分析不同临床情况肝癌患者KIF15表达及其对肝癌患者生存率的影响。观察肝癌SMMC-7721细胞的KIF15表达下调后,增殖能力、细胞周期及侵袭能力的变化。
结果:数据库分析结果显示,肝癌患者的TNM或T分期越高,KIF15相对表达量越高(均P<0.05);KIF15高表达肝癌患者生存率明显低于KIF15低表达肝癌患者(P<0.05)。SMMC-7721细胞转染siKIF15后,细胞增殖活性明显降低、细胞G0/G1期阻滞明显增加、细胞侵袭能力明显减弱。
结论:KIF15的表达于肝癌的进展密切相关,其作用机制可能与促进肝癌细胞增殖和侵袭有关。
原发性肝癌(primary hepatocellular carcinoma,PHC)是指由肝细胞或肝内胆管上皮细胞发生的恶性肿瘤,其中肝细胞癌占85%以上,是我国第四位常见的恶性肿瘤,病死率位居第三[1]。肝细胞癌恶性程度高,易发生转移,许多患者确诊时已发展为晚期,5年生存率小于5%[2]。驱动蛋白超家族(kinesin superfamily proteins,KIFs)是一类分子马达,通过水解ATP产生能量来进行细胞内囊泡、细胞器、RNA等物质的运输[3-4]。驱动蛋白家族成员15(kinesin family member 15,KIF15)是该家族中的一员,属于kinesin-12亚家族,又称hklp2,是除Kinesin-5之外第二个四聚体纺锤体马达[5-6]。已有研究[7-9]表明,KIF与乳腺癌、肺癌、胰腺癌的发生发展过程相关,然而其在肝癌中的研究尚未报道。本研究通过生物信息学分析KIF15与肝细胞癌的关系,并通过下调其表达探究其对肝细胞癌转移侵袭能力的影响。
人肝癌细胞系SMMC-7721由华中科技大学附属同济医院胆胰外科实验室馈赠。DMEM培养基、胎牛血清购自美国Gibco公司,siKIF15购自广州锐博生物科技有限公司,Lipofectamine2000购自美国赛默飞公司,Transwell小室及六孔板购自美国Corning公司,KIF15、GAPDH抗体购自美国CST公司,CCK-8试剂购自日本Dojindo公司,Matrigel基质胶购于美国BD公司。
1.2.1 细胞培养 人肝癌细胞系SMMC-7721在含10%胎牛血清的DMEM培养基、37 ℃、5%CO2的条件下,于细胞培养箱中培养,根据细胞生长情况每2~3天更换新鲜培养基或进行细胞传代培养。
1.2.2 生物信息学分析 从UCSC Xena网站下载TCGA Liver Cancer肝癌数据中KIF15的表达情况及相关临床资料[10]。基因表达使用标准化高敏荧光序列进行分析,将标准化计数结果作为基因表达程度的估计值。分析得到不同TNM分期肝癌患者体内KIF15的表达以及肝癌患者的生存曲线。
1.2.3 siRNA转染 选取处于对数生长期的SMMC-7721细胞制备细胞悬液,取2×105个细胞接种于六孔板中,待细胞贴壁后按照lipofectamine 2000试剂说明书将siKIF15及siControl分别转染入细胞中作为实验组及对照组。Western blot检测实验组及对照组细胞中KIF15表达量。
1.2.4 CCK-8法检测细胞增殖活性 分别取转染了siKIF15的实验组及转染了siControl的对照组SMMC-7721细胞,调整细胞密度为2×104个/mL接种于96孔培养板中,每孔100 μL,置于培养箱中培养。待细胞完全贴壁后吸去培养液,于贴壁0、24、48、72 h后每孔加入20 μL CCK-8,继续培养4 h,于酶标仪波长450 nm处读取吸光度(OD)值。
1.2.5 流式细胞术检测细胞周期 分别收集实验组及对照组细胞,PBS洗涤后缓慢滴入预冷的无水乙醇,调整乙醇浓度至75%,充分振荡,-20 ℃固定过夜。800 r/min,5 min收集细胞,PBS洗涤后加入 50 μL RNase及 50 μL碘化丙啶(PI),室温避光孵育30 min。流式细胞仪检测细胞周期分布,采用CellQuest及ModFit软件分析实验结果。
1.2.6 Trasnwell侵袭实验 Matrigel基质胶用无血清培养基按1:8稀释,加入小室上室面,4 ℃过夜。第2天于37 ℃ 30 min水化基底膜,同时制备转染48 h后的SMMC-7721细胞悬液(用不含血清的培养基重悬),密度为2×105个/mL,每个小室中加入200 μL,下室加入含10%血清的培养基600 μL,置于培养箱中培养24~36 h后用PBS洗两遍,4%多聚甲醛固定30 min,0.1%结晶紫染色30 min,用棉签擦去上室面细胞,晾干并拍照。
采用SPSS 23.0对实验数据进行分析、整理。计量资料采用均数±标准差(±s)表示,两组比较采用t检验,P<0.05为差异有统计学意义。
通过分析得出,T2~T4分期的肝癌患者中K I F 15相对表达量明显高于T1分期的患者[(-1.337±2.249) vs. (-1.863±1.924);t=2.562,P<0.05];TNM分期在II~IV期的患者KIF15相对表达量明显高于TNM分期为I期的患者[(-1.282±2.229) vs. ( -1.839±1.921);t=2.639,P<0.01](图1)。KIF15表达量在淋巴结转移阳性组和淋巴结转移阴性无统计学差异(P>0.05)。
图1 KIF15在不同临床资料分组的肝癌患者中的表达比较
Figure1 Comparison of KIF15 expressions between patients grouped by different clinical data
通过绘制生存曲线并进行统计学分析得出,KIF15相对表达量≥-1.45的肝癌患者生存率明显低于KIF15相对表达量<-1.45的患者,差异具有统计学意义(P<0.05)(图2)。
将构建好的siKIF15转染入SMMC-7721细胞系中,Western blot检测转染效率,结果表明,转染了siKIF15的细胞KIF15蛋白表达量明显低于转染siControl的对照组(图3)。
CCK-8结果表明,转染了siKIF15的实验组SMMC-7721细胞增殖活性较对照组细胞有所降低。其中,实验组细胞在96 h的吸光度为1.826±0.079,对照组为2.374±0.156,差异有统计学意义(t=3.124,P<0.05)(图4)。
图2 不同KIF15表达量肝癌患者的生存曲线
Figure2 Survival curves of liver cancer patients with different KIF15 expressions
图3 Western blot检测沉默效率
Figure3 Silencing efficiency detection by Western blot
图4 细胞增殖曲线
Figure4 Cell proliferation curves
流式细胞术结果表明,转染了siKIF 15的实验组SMMC-7721细胞G1期比例高于对照组,差异具有统计学意义[(81.04±2.47)% vs.(64.98%±2.67)%,t=4.417,P<0.05];S期比例低于对照组,差异具有统计学意义[(13.35±2.16)% vs.(28.48±2.14)%,t=4.978,P<0.01];G2期比例无统计学差异(P>0.05)(图5)。
图5 细胞周期分析
Figure5 cell cycle analysis
Transwell实验结果表明,转染了siKIF15的SMMC-7721细胞侵袭数目为(417±164)个,明显低于对照组细胞侵袭数目(951±159)个,差异有统计学意义(t=4.679,P<0.01)(图6)。
图6 细胞侵袭力检测
Figure6 Determination of invasion ability of the cells
近年来大量研究[11-13]表明,KIFs是一类保守的微管依赖的分子运动蛋白,具有ATP酶活性和运动特征,其与神经退行性疾病、代谢性疾病、肾病等多种疾病均有关联。除此之外,KIFs在肿瘤的发生发展过程中也起到重要作用[14-17]。学者[18-20]认为,在肿瘤细胞进行分裂的过程中,异常表达的KIFs将通过影响染色体的凝集、纺锤体的形成发生异常,进而影响肿瘤细胞增殖和侵袭转移能力。例如在神经胶质瘤中,KIF1B通过诱导膜型基质金属蛋白酶促进胶质瘤细胞的迁移和侵袭[21]。在沉默KIF2A后,乳腺癌细胞的增殖和迁移能力被明显抑制,并且其与乳腺癌的预后密切相关[22]。而在肺癌细胞中,下调KIF23促进凋亡的发生,其被认为是肺癌患者潜在治疗靶点[23]。肝细胞癌是一类恶性程度极高的肿瘤,KIFs对肝癌发生发展的作用尚不明确[24]。本研究着重分析TCGA数据库中KIF15的表达与临床资料的相关性,探究KIF15对肝癌恶性生物学行为的影响。
本研究首先通过TCGA Liver Cancer肝癌数据分析得出KIF15在TNM II~IV期患者的表达量明显高于TNM I期患者,其中T分期为2~4期的患者KIF15表达量明显高于T1期患者。而进一步通过绘制生存曲线并统计分析得出KIF15高表达的肝癌患者生存率明显低于KIF15低表达患者,提示KIF15可以作为判断肝癌预后的指标,即KIF15高表达患者临床预后较差。在细胞实验中,将siKIF15导入肝癌细胞并通过Western blot验证了其沉默效率。CCK-8实验表明沉默KIF15后肝癌细胞增殖能力明显降低,进一步分析细胞周期发现沉默KIF15能够将肝癌细胞周期阻滞在G0/G1期,表明KIF15可以通过促进肝癌细胞的G1/S期转化而加速其增殖。接下来本研究还探讨了KIF15与肝癌细胞侵袭能力的关系,Transwell实验表明,相比于对照组,沉默KIF15肝癌细胞侵袭能力明显下降,表明KIF15在肝癌细胞的侵袭过程中发挥了一定的促进作用。在Eskova等[4]的研究中,KIF15介导网格蛋白Dab2在细胞内的定位,调节整合素的内化过程从而影响了细胞的侵袭能力。Wang等[25]也发现KIF15通过激活MEK-ERK通路加速了细胞的G1/S期转化,促进了胰腺癌细胞的异常增殖。以上研究结果均提示KIF15在扮演了促进肿瘤进展的角色。
综上所述,KIF15在肝癌的增殖和侵袭过程中发挥了一定的作用,并可以作为判断肝癌患者预后的指标,有望成为肝癌早期诊断的标志物及化疗的潜在靶点,但其促进肝癌细胞侵袭转移的具体机制还需进一步深入研究。
[1] 中华人民共和国国家卫生和计划生育委员会. 原发性肝癌诊疗规范(2017年版)[J]. 临床肝胆病杂志, 2017, 33(8):1419-1431.doi:10.3969/j.issn.1001-5256.2017.08.003.Bureau of Medical Administration, National Health and Family Planning Commission. Diagnosis, management, and treatment of hepatocellular carcinoma (V2017)[J]. Journal of Clinical Hepatology, 2017, 33(8):1419-1431. doi:10.3969/j.issn.1001-5256.2017.08.003.
[2] Dutta R, Mahato RI. Recent advances in hepatocellular carcinoma therapy[J]. Pharmacol Ther, 2017, 173:106-117. doi:10.1016/j.pharmthera.2017.02.010.
[3] Liu M, Nadar VC, Kozielski F, et al. Kinesin-12, a mitotic microtubule-associated motor protein, impacts axonal growth,navigation, and branching[J]. J Neurosci, 2010, 30(44):14896-14906. doi:10.1523/JNEUROSCI.3739-10.2010.
[4] Eskova A, Knapp B, Matelska D, et al. An RNAi screen identifies KIF15 as a novel regulator of the endocytic trafficking of integrin[J]. J Cell Sci, 2014, 127(Pt 11):2433-2447. doi:10.1242/jcs.137281.
[5] Florian S, Mayer TU. Modulated microtubule dynamics enable Hklp2/Kif15 to assemble bipolar spindles[J]. Cell Cycle, 2011,10(20):3533-3544. doi:10.4161/cc.10.20.17817.
[6] Sebastian J. Dihydropyrazole and dihydropyrrole structures based design of Kif15 inhibitors as novel therapeutic agents for cancer[J]. Comput Biol Chem, 2017, 68:164-174. doi:10.1016/j.compbiolchem.2017.03.006.
[7] Zou JX, Duan Z, Wang J, et al. Kinesin Family Deregulation Coordinated by Bromodomain Protein ANCCA and Histone Methyltransferase MLL for Breast Cancer Cell Growth, Survival,and Tamoxifen Resistance[J]. Mol Cancer Res, 2014, 12(4):539-549. doi:10.1158/1541-7786.MCR-13-0459.
[8] Bidkhori G, Narimani Z, Ashtiani SH, et al. Reconstruction of an integrated genome-scale co-expression network reveals key modules involved in lung adenocarcinoma[J]. Plos One, 2013,8(7):e67552. doi:10.1371/journal.pone.0067552.
[9] Yokota K, Sasaki H, Okuda K, et al. KIF5B/RET fusion gene in surgically-treated adenocarcinoma of the lung[J]. Oncol Rep, 2012,28(4):1187-1192. doi:10.3892/or.2012.1908.
[10] TCGA. Liver Cancer (LIHC) dataset. UCSC Xena, USA[DB].https://xenabrowser.net/. Accessed 16 Jan 2018.
[11] Yang W, Tanaka Y, Bundo M, et al. Antioxidant signaling involving the microtubule motor KIF12 is an intracellular target of nutrition excess in beta cells[J]. Dev Cell, 2014, 31(2):202-214. doi:10.1016/j.devcel.2014.08.028.
[12] Lin F, Hiesberger T, Cordes K, et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease[J]. Proc Natl Acad Sci U S A,2003, 100(9):5286-5291. doi:10.1073/pnas.0836980100.
[13] Inomata H, Nakamura Y, Hayakawa A, et al. A scaffold protein JIP-1b enhances amyloid precursor protein phosphorylation by JNK and its association with kinesin light chain 1[J]. J Biol Chem, 2003,278(25):22946-22955. doi:10.1074/jbc.M212160200.
[14] Chen J, Li S, Zhou S, et al. Kinesin superfamily protein expression and its association with progression and prognosis in hepatocellular carcinoma[J]. J Cancer Res Ther, 2017, 13(4):651-659. doi:10.4103/jcrt.JCRT_491_17.
[15] Venere M, Horbinski C, Crish JF, et al. The mitotic kinesin KIF11 is a driver of invasion, proliferation, and self-renewal in glioblastoma[J]. Sci Transl Med, 2015, 7(304):304ra143. doi:10.1126/scitranslmed.aac6762.
[16] Shichijo S, Ito M, Azuma K, et al. A unique gene having homology with the kinesin family member 18A encodes a tumour-associated antigen recognised by cytotoxic T lymphocytes from HLAA2+colon cancer patients[J]. Eur J Cancer, 2005, 41(9):1323-1330.doi:10.1016/j.ejca.2005.02.025
[17] Sun XT, Jin ZT, Song X, et al. Evaluation of KIF23 variant 1 expression and relevance as a novel prognostic factor in patients with hepatocellular carcinoma[J]. BMC Cancer, 2015, 15:961. doi:10.1186/s12885-015-1987-1.
[18] Mazumdar M, Lee JH, Sengupta K, et al. Tumor formation via loss of a molecular motor protein[J]. Curr Biol, 2006, 16(15):1559-1564. doi:10.1016/j.cub.2006.06.029.
[19] Myers SM, Collins I. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy[J]. Future Med Chem, 2016, 8(4):463-489. doi:10.4155/fmc.16.5.
[20] Yu Y, Feng YM. The role of kinesin family proteins in tumorigenesis and progression:potential biomarkers and molecular targets for cancer therapy[J]. Cancer, 2010, 116(22):5150-5160. doi:10.1002/cncr.25461.
[21] Chen S, Han M, Chen W, et al. KIF1B promotes glioma migration and invasion via cell surface localization of MT1-MMP[J]. Oncol Rep, 2016, 35(2):971-977. doi:10.3892/or.2015.4426.
[22] Wang J, Ma S, Ma R, et al. KIF2A silencing inhibits the proliferation and migration of breast cancer cells and correlates with unfavorable prognosis in breast cancer[J]. BMC Cancer, 2014,14:461. doi:10.1186/1471-2407-14-461.
[23] Iltzsche F, Simon K, Stopp S, et al. An important role for Myb-MuvB and its target gene KIF23 in a mouse model of lung adenocarcinoma[J]. Oncogene, 2017, 36(1):110-121. doi:10.1038/onc.2016.181.
[24] Sia D, Villanueva A, Friedman SL, et al. Liver Cancer Cell of Origin, Molecular Class, and Effects on Patient Prognosis[J].Gastroenterology, 2017, 152(4):745-761. doi:10.1053/j.gastro.2016.11.048.
[25] Wang J, Guo X, Xie C, et al. KIF15 promotes pancreatic cancer proliferation via the MEK-ERK signalling pathway[J]. Br J Cancer,2017, 117(2):245-255. doi:10.1038/bjc.2017.165.
Expression of kinesin family member 15 in liver cancer and its significance
Methods:Using TCGA database, the KIF15 expressions in liver cancer patients with different clinical conditions and its association with the survival rates of liver cancer patients were analyzed. In liver cancer SMMC-7721 cells after down-regulating KIF15 expression, the changes in proliferative ability, cell cycle characteristics and invasion capacity were observed.
Results:The results of database analysis showed that the more advanced TNM or T stages corresponded to higher KIF15 expression (both P<0.05); The survival rate in liver cancer patients with higher KIF15 expression was significantly lower than that in liver cancer patients with low KIF15 expression (P<0.05). In SMMC-7721 cells after transfection with siKIF15, the proliferative ability was significantly reduced, G0/G1 phase arrest was significantly increased, and the invasion capability was significantly weakened (all P<0.05).
Conclusion:KIF15 expression is closely related to the progression of liver cancer, and the mechanism may probably be associated with its promoting the proliferation and invasion of the liver cancer cells.
Cite this article as: He Z, Wu H, Zheng J. Expression of kinesin family member 15 in liver cancer and its significance[J]. Chin J Gen Surg,2019, 28(1):58-63. doi:10.7659/j.issn.1005-6947.2019.01.008