方法:通过qPCR技术检测51对PTC癌组织及癌旁组织手术标本中miR-221的表达情况,并通过实时荧光定量RT-PCR检测甲状腺乳头状癌K1细胞miR-221的表达,将PTC K1细胞分别转染miRNA随机序列(阴性对照组)和miR-221抑制物(miR-221抑制物组)后,以无处理的K1细胞为空白对照,分别用MTT比色法检测细胞增殖,流式细胞术分析细胞周期、细胞凋亡率,Transwell小室检测细胞侵袭力。
结果:miR-221在PTC癌组织中的相对表达量均明显高于癌旁组织的相对表达量(P<0.05)。与空白对照组比较,miR-221抑制物组K1细胞增殖能力明显降低,细胞凋亡率明显增加,G0/G1期细胞比例明显升高,而G2/M期细胞的比例明显降低,细胞侵袭能力明显降低,差异均有统计学意义(均P<0.05)。阴性对照组与空白对照组间以上指标差异均无统计学意义(均P>0.05)。
结论:miR-221在PTC中的表达升高,且可能通过调节细胞周期与凋亡而影响PTC细胞的增殖与侵袭能力。miR-221有作为PTC早期诊断与治疗的生物标志物的潜在价值。
甲状腺癌是最常见的内分泌系统恶性肿瘤,近年来,甲状腺癌发病率屡日剧增。甲状腺乳头状癌(papillary thyroid carcinoma,PTC)是甲状腺癌的常见病理类型,其分化程度较高,恶性程度低,总体预后良好,但侵袭型乳头状甲状腺癌有转移倾向,淋巴结转移较早,约占甲状腺恶性肿瘤的85%[1]。部分基因突变与PTC侵袭性相关,但非编码RNA在PTC发生和转移中的作用机制还不清楚。因此,揭示其潜在的分子机制对于改善PTC患者的病情、预后及术后生活质量至关重要。
miRNA是一种小分子RNA,约由25个核苷酸组成,在早期发育、脂肪代谢、细胞分化等生物学活动中发挥着重要作用[2]。最近研究证明,miRNA的异常表达与恶性肿瘤的发生发展有着密不可分的联系。在肝细胞癌[3-4]、乳腺癌[5-6]、结直肠癌[7]中作为抑癌基因或癌基因参与细胞的增殖、凋亡和侵袭,提示其在肿瘤进展的作用机制中具有重要的研究价值。Cong等[8]检测了肿瘤基因组图谱数据库中近500例PTC标本和60例正常甲状腺标本中miRNA的表达情况,研究显示与正常的甲状腺组织相比,PTC中miR-221表达上调。目前对miR-221作用机制及功能研究较少,本研究旨在探索miR-221的各种生物学行为,并探讨miR-221在PTC发生中可能的作用机制。
本实验51对PTC组织及其癌旁正常组织均来自贵州医科大学附属医院。所有标本均在30 min内取材,取得标本后迅速放入液氮罐内冷藏,最后移至到-80 ℃的冰箱储存。所有标本均有完整的临床资料,术前均未进行化疗和放疗。PTC K1细胞系购自上海素尔生物科技有限公司,TRIzol试剂盒购自Ambion公司;HiScript Reverse Transcriptase(RNase H)、5×HiScript Buffer、50×ROX Reference Dye 2和SYBR Green Master Mix购自VAZYME公司;ddH2O(DNase/RNase Free)购自Genecopoeia公司;Ribonuclease Inhibitor、dNTP、Taq Plus DNA Polymerase和DL2000 DNA Marker购自TIANGEN公司;Random Primer(N6)购自AIDLAB公司;引物合成来自擎科公司。DMEM、胎牛血清、青-链霉素双抗、胰蛋白酶-EDTA(0.25%),酚红,No EDTA和Opti-MEM®购自Gibco公司;MTT购自Biosharp公司;lipofectamine 2000购自Invitrogen公司;周期检测盒购自凯基生物;APC/7-AAD凋亡试剂盒购自三箭。miR-221抑制物阴性对照序列:5'-CAG UAC UUU UGU UGA GUA CAA-3',miR-221抑制剂序列:5'-GAA ACC CAG CAG ACA AUG UAG CU-3'。
1.2.1 细胞培养、细胞转染及分组 PTC K1细胞系用含10%胎牛血清的培养液,于37 ℃ 5% CO2饱和湿度条件下进行培养。取状态良好的处于对数生长期的K1细胞分成3组:空白对照、阴性对照序列转染组(阴性对照组)、miR-221抑制物转染组(miR-221抑制物),接种于96孔板,于37 ℃ 5% CO2培养箱中培养,待细胞生长达70%时,用Lipofectamine 2000分别转染miR-221抑制剂阴性对照和miR-221抑制剂,转染后继续培养相应时间。
1.2.2 qRT-PCR检测甲状腺组织miR-221的表达 按照TRIzol试剂盒说明书提取总RNA,按 照TransScript First-Strand cDNA Synthesis SuperMix for RT-PCR试剂盒说明书对其进行反转录合成cDNA。按照TransStart Green qPCR SuperMix试剂盒说明书进行PCR反应,引物序列如下:U6正向引物:5'-CGC TTC GGC AGC ACA TAT AC-3',U6反向引物:5'-AAA TAT GGA ACG CTT CAC GA-3',hsa-miR-221-3p环引物:5'-GTC GTA TCC AGT GCA GGG TCC GAG GTA TTC GCA CTG GAT ACG ACG AAA CCC A-3',hsa-miR-221-3p正向引物:5'-TGC GCA GCT ACA TTG TCT GCG G-3',反向引物:5'- CCA GTG CAG GGT CCG AGG TAT T-3'。PCR反应条件是:50 ℃ 2 min,95 ℃ 10 min;95 ℃ 30 s,60 ℃ 30 s,40个循环。每个样本重复3次,用ABI QuantStudio 6实时荧光定量PCR仪进行荧光定量PCR实验。最终数据以2-(△△ct)进行分析。
1.2.3 qRT-PCR检测K1细胞miR-221的表达 按照TRIzol试剂盒说明书从培养细胞中提取总RNA,然后按照TransScript First-Strand cDNA Synthesis SuperMix for RT-PCR试剂盒说明书对其进行反转录合成cDNA。按照TransStart Green qPCR SuperMix试剂盒说明书进行PCR反应,引物序列和PCR反应条件同上。每个样本重复3次,用ABI QuantStudio 6实时荧光定量PCR仪进行荧光定量PCR实验。最终数据以2-(△△ct)进行分析。
1.2.4 MTT比色法检测细胞增殖 取对数生长期,培育状态良好的K1细胞,接种于96孔板,同时设空白组,阴性对照组、miR-221抑制物组。37 ℃过夜,细胞培养所需时间后,每孔加入10 μL MTT,37 ℃培养4 h,吸出培养基,150 μL DMSO震荡10 min,酶标仪测定各孔吸光值OD568 nm。实验至少重复3次。
1.2.5 流式细胞仪分析细胞周期 分别取对数生长期,培育状态良好的空白对照组、NC转染组、miR-221 inhibitor转染组K1细胞,用0.25%胰酶消化细胞,终止后收集细胞,1 000 r/min,5 min,去上清,PBS重悬润洗2次,1 000 r/min,5 min,去上清,100 μL PBS重悬细胞,缓慢加入700 μL预冷的80%乙醇,使乙醇终浓度为70%,4 ℃固定4 h以上,1 000 r/min,5 min,预 冷PBS润洗2次,加入100 μL RNase(50 μg/mL),37 ℃孵育30 min,加入400 μL PI(50 μg/mL),4 ℃避光染色30 min,流式细胞仪检测。实验至少重复3次。
1.2.6 流式细胞仪分析细胞凋亡率 分别取对数生长期,培育状态良好的空白对照组、NC转染组、miR-221 inhibitor转染组K1细胞,培养所需时间后,进行收集,1 200 r/min,5 min离心,去上清,加PBS重悬,用PBS润洗2次,1 200 r/min,5 min,按照Annexin V-APC/7-AAD细胞凋亡检测试剂盒操作说明进行,加入500 μL结合缓冲液,重悬细胞,加5 μL Annexin V-APC混匀后加5 μL 7-AAD,混匀,室温避光反应5~15 min(同时设阴性对照,即正常细胞不加Annexin V-APC和7-AAD;以凋亡效果最明显的溶剂组作为阳性对照,设对照组 1和2,对照组1只加5 μL AnnexinV-APC单标;对照组2只加5 μL 7-AAD单标)。上机检测。实验至少重复3次。
1.2.7 Transwell小室检测细胞侵袭力 取处理好的 K1细胞,PBS清洗,0.25%胰酶消化收集,1 000 r/min,5 min离心,去上清,PBS清洗后,DMEM培养基重悬细胞,计数,DMEM培养基稀释细胞浓度至2×104/mL,备用,将 Matrigel在4 ℃提前1 d融化,Transwell小室、24孔培养板和枪头在-20 ℃过夜预冷,用无血清培养基稀释 Matrigel至终浓度1 mg/mL,冰上操作,在24孔板中注入4 ℃预冷800 μL 10% FBS DMEM培养基(含双抗),并放入Transwell小室,在Transwell小室上室底部中央垂直加入100 μL终浓度为 1 mg/mL的Matrigel,37 ℃室温温育成胶状后,在Transwell上室分别接入200 μL各组细胞悬液,37 ℃,5%CO2培养箱培养24 h,取出Transwell,PBS清洗小室,70%冰乙醇固定1 h,染色后,常温静置20 min,PBS清洁,用无污染的棉球将上室一侧的没有迁移的细胞擦净,显微镜下仔细观察并拍照。实验至少重复3次。
应用SPSS 20.0软件进行处理,所有数据都是以均数±标准差(±s)方差表达。组间统计学显著性差异使用单因素方差分析或未配对独立样本 t检验。检验水准:α=0.05。
PCR结果显示,51例癌组织和癌旁组织的相对表达量分别为1.208 61±0.120 872,0.626 33±0.075 037,癌组织的相对表达量明显高于癌旁组织,差异有统计学意义(P<0.05)(图1)。
图1 qRT-PCR检测hsa-miR-221-3p的表达
Figure1 The expression of hsa-miR-221-3p was measured by qRT-PCR
A:U6扩增曲线;B:U6溶解曲线;C:hsa-miR-221-3p扩增曲线;D:hsa-miR-221-3p溶解曲线;E:hsa-miR-221-3p相对表达量
A:U6 amplification curve; B:U6 dissolution curve; C:hsa-miR-221-3p amplification curve; D:hsa-miR-221-3p dissolution curve; E:Relative expression levels of hsa-miR-221-3p
qRT-PCR结果显示,空白对照组、阴性对照组、miR-221抑制物组miR-221相对表达量平均值分别为0.997、0.984、0.277,miR-221抑制物组miR-221的表达量明显低于空白对照组与阴性对照组(均P<0.05),而后两组间差异无统计学意义(P>0.05)(图2)。
MTT实验结果显示在同一时间,miR-221抑制物组较其他组吸光值明显降低(均P<0.05),而阴性对照组与空白对照组间差异无统计学意义(P>0.05)(图3)。各组增殖率为:空白对照组100.00%、阴性对照组97.89%、miR-221抑制物组61.77%。
图2 miR-221 inhibitor的下调效率
Figure2 The downregulation efficiency of miR-221 inhibitor
A:U6扩增曲线;B:U6溶解曲线;C:hsa-miR-221-3p扩增曲线;D:hsa-miR-221-3p溶解曲线;E:hsa-miR-221-3p相对表达量
A:U6 amplification curve; B:U6 dissolution curve; C:hsa-miR-221-3p amplification curve; D:hsa-miR-221-3p dissolution curve; E:Relative expression levels of hsa-miR-221-3p
图3 miR-221对甲状腺乳头状癌细胞增殖的影响
Figure3 Effect of miR-221 on proliferation of papillary thyroid cancer cells
3次凋亡实验显示,空白对照组凋亡率分别为7.40%、6.58%、6.71%;阴性对照组凋亡率分别为6.79%、6.42%、6.72%;miR-221抑制物组凋亡率分别为23.43%、25.03%、24.77%,miR-221抑制物组较空白对照组与阴性对照组凋亡比例明显增加(均P<0.05),而阴性对照组与空白对照组的凋亡率无统计学差异(P>0.05)(图4)。细胞周期实验显示,miR-221抑制物组G0/G1期比例较空白对照组与阴性对照组转染组,而G2/M期的比例较空白对照组与阴性对照组转染组明显降低(均P<0.05),而阴性对照组与空白对照组的细胞周期分布无统计学差异(P>0.05)(图5)。
侵袭实验中,每组设3个平行样本,每个样本观测5个视野(×200),空白对照组、阴性对照组、miR-221抑制物组的平均侵袭数为49.2、50.0、33.2,miR-221抑制物组较空白对照组与阴性对照组平均侵袭数明显减少(均P<0.05),而后两组间差异无统计学意义(图6)。
图4 miR-221对PTC细胞凋亡的影响
Figure4 Influence of miR-221 on apoptosis of PTC cells
图5 miR-221对PTC细胞周期的影响
Figure5 Influence of miR-221 on cell cycle of PTC cells
图6 miR-221对PTC细胞侵袭的影响
Figure6 Influence of miR-221 on the invasion ability of PTC cells
miR-221在许多肿瘤中均表达出了致癌性。通过数据库检索显示,在成胶质细胞瘤[9]、肝细胞癌[10]、乳腺癌[11]、宫颈癌[12]、卵巢癌[13]、黑色素瘤[14]、甲状腺癌[15-16]、前列腺癌[17]中miR-221通过异常高表达促进了肿瘤细胞的恶性增殖、免疫逃逸、侵袭和转移。但是,在一些其他肿瘤中 miR-221也表达出了抑癌性。例如,miR-221通过靶向Ecm29,减弱了前列腺癌PCa细胞的迁移和侵袭[18]。miR-221通过针对红白血病细胞和胃肠道间质肿瘤中的Kit,从而抑制了癌细胞增殖并诱导了细胞凋亡[19]。此外,Okamoto等[20]发现miR-221在人胆管癌细胞中通过靶向调节亚基1(PIK3R1)的磷酸肌醇3激酶,从而抑制HuH28细胞增殖并赋予Gem敏感性。表明在不同肿瘤中,miR-221所起到的作用可能完全不同。
近些年来,通过对甲状腺癌的研究发现,不同病理类型的甲状腺癌发生与发展均和miRNA有着密切的关系。本研究发现,甲状腺乳头状癌组织及甲状腺乳头状癌细胞中miR-221表达明显上调,与Cerutti等[21]研究结果一致,认为PTC组织中miR-221的表达相比正常甲状腺组织显著增加。上述分析结果通过Northern印迹法和RT-PCR被进一步证实。此外,在甲状腺结节细针穿刺细胞学检查发现,miR-221过表达的甲状腺结节,经外科手术取活检后被最终确诊为PTC[21]。人类PTC来源的细胞系中通过阻断过表达的发现,miR-221的过度表达在PTC癌变中起关键作用。在FTC中,研究发现miR-197和miR-346表达的增加有助于FTC的发生,它可能通过干扰基因表达而起作用[22]。而miR-221虽然与PTC的致癌作用相关,但与FTC的发展无明显相关性[23]。在甲状腺未分化癌中,通过miRNA芯片微阵列分析ATC的miRNA发现,与正常甲状腺组织相比,miR-26a、miR-30d、miR-125b、miR-30a-5P的表达显著减少[24],而miR-221并未在ATC中上调[25]。在MTC中,miRNA的报道较为少见,仅有的报道中也并未显示miR-221和MTC的关系。目前的研究表明,miR-221作为一种致癌基因参与了甲状腺癌的发生和发展。
在PTC体外实验中,本研究发现miR-221较正常甲状腺组织明显高表达,通过向K1细胞系转染miR-221抑制物后,发现细胞增殖能力显著降低,细胞凋亡率显著升高,细胞生长周期明显延长,侵袭能力显著降低,表明miR-221促进了K1细胞的增殖和侵袭能力,降低了凋亡能力和细胞周期。
PI3K/Akt起始的细胞途径受到癌基因或抑癌基因的正向或负向控制,而这些基因又被增强或受多种因素(例如miRNA)抑制[26]。磷酸酶张力蛋白同源物(PTEN)在调节细胞黏附,增殖和迁移的信号通路中起到至关重要的作用。PTEN是包括肝癌在内的多种癌症的肿瘤抑制因子,他影响Akt和ERK信号通路[27]。据报道,在许多人类癌症中,miR-221通过下调PTEN来增强Akt的磷酸化[28]。 在胃癌细胞中,miR-221簇已显示出靶向肿瘤抑制基因PTEN,导致癌细胞增殖和放射抗性增加[29]。由于PTEN是miR-221的潜在靶标[30],因此miR-221可能和Akt通路的增强存在联系。因此笔者推测,miR-221对PTC增殖、凋亡、侵袭的影响可能与下调PTEN从而增强Akt信号通路有关。本研究存在着一定的欠缺和不足,虽然本研究探讨了miR-221在PTC发生和发展中的作用,但对于它产生作用的机制并没有做更进一步的实验研究,只能通过往期的报道来进行粗略的预测。
本研究发现miR-221在PTC组织及细胞中呈高表达;术前检测miR-221的表达状态对于提高甲状腺癌诊断率可能具有重要意义。抑制miR-221表达明显抑制PTC K1细胞株的增殖、促进细胞株的凋亡和降低细胞株的侵袭性。为侵袭性PTC的靶基因治疗提供了一定的理论依据。
[1] Kim SJ,Myong JP,Jee HG,et al.Combined effect of Hashimoto's thyroiditis and BRAF(V600E) mutation status on aggressiveness in papillary thyroid cancer[J].Head Neck,2016,38(1):95-101.doi:10.1002/hed.23854.
[2] Rupaimoole R,Slack FJ.MicroRNA therapeutics:towards a new era for the management of cancer and other diseases[J].Nat Rev Drug Discov,2017,16(3):203-222.doi:10.1038/nrd.2016.246.
[3] 赵新阳,肖朝文,郑小林,等.miR-96的表达对肝细胞癌细胞迁移和侵袭的影响[J].中国普通外科杂志,2017,26(7):877-882.doi:10.3978/j.issn.1005-6947.2017.07.010.
Zhao XY,Xiao CW,Zheng XL,et al.Influence of miR-96 expression on migration and invasion of hepatocellular carcinoma cells[J].Chinese Journal of General Surgery,2017,26(7):877-882.doi:10.3978/j.issn.1005-6947.2017.07.010.
[4] 秦麒麟,李清龙.miRNA-122与肝细胞癌的研究进展[J].中国普通外科杂志,2015,24(1):105-109.doi:10.3978/j.issn.1005-6947.2015.01.020.
Qin QL,Li QL.Research progress of miRNA-122 and hepatocellular carcinoma[J].Chinese Journal of General Surgery,2015,24(1):105-109.doi:10.3978/j.issn.1005-6947.2015.01.020.
[5] 徐泰.miRNA-639在乳腺癌中表达及其意义[J].中国普通外科杂志,2014,23(11):1506-1511.doi:10.7659/j.issn.1005-6947.2014.11.010.
Xu T.miRNA-639 expression in breast cancer and its significance[J].Chinese Journal of General Surgery,2014,23(11):1506-1511.doi:10.7659/j.issn.1005-6947.2014.11.010.
[6] 阮永威,田兴松,侯连泽.乳腺癌 p16,p53 基因蛋白和 mRNA 的表达及其意义[J].中國普通外科杂志,2008,17(5):497-501.
Ruan YW,Tian XS,Hou LZ.The significance of p16 and p53 gene protein and mRNA expression on breast cancer[J].Chinese Journal of General Surgery,2008,17(5):497-501.
[7] 于卫芳,翟从劼,樊智彬,等.miR-150 和 miR-134 在结直肠癌及腺瘤中的表达[J].中国普通外科杂志,2014,23(10):1349-1354.doi:10.7659/j.issn.1005-6947.2014.10.009.
Yu WF,Zhai CJ,Fan ZB,et al.Expression of miR-150 and miR-134 in colorectal cancer and colorectal adenoma[J].Chinese Journal of General Surgery,2014,23(10):1349-1354.doi:10.7659/j.issn.1005-6947.2014.10.009.
[8] Cong D,He M,Chen S,et al.Expression profiles of pivotal microRNAs and targets in thyroid papillary carcinoma:an analysis of The Cancer Genome Atlas[J].Onco Targets Ther,2015,8:2271-2277.doi:10.2147/OTT.S85753.
[9] Zhang CZ,Zhang JX,Zhang AL,et al.miR-221 and miR-222 target PUMA to induce cell survival in glioblastoma[J].Mol Cancer,2010,9:229.doi:10.1186/1476-4598-9-229.
[10] Fornari F,Gramantieri L,Ferracin M,et al.miR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma[J].Oncogene,2008,27(43):5651-5661.doi:10.1038/onc.2008.178.
[11] Zhao JJ,Lin JH,Yang H,et al.MicroRNA-221/222 Negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer[J].J Biol Chem,2008,283(45):31079-31086.doi:10.1074/jbc.M806041200.
[12] Zhou CF,Ma J,Huang L,et al.Cervical squamous cell carcinomasecreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1[J].Oncogene,2019,38(8):1256-1268.doi:10.1038/s41388-018-0511-x.
[13] Wurz K,Garcia RL,Goff BA,et al.miR-221 and miR-222 alterations in sporadic ovarian carcinoma:relationship 12 Journal of Oncology to CDKN1B,CDKNIC and overall survival[J].Genes Chromosomes Cancer,2010,49(7):577-584.doi:10.1002/gcc.20768.
[14] Felicetti F,Errico MC,Botteroetal L,et al.The Promyelocytic Leukemia Zinc finger-microRNA-221/-222 Pathway Controls Melanoma Progression Through Multiple Oncogenic Mechanisms[J].Cancer Res,2008,68(8):2745-2754.doi:10.1158/0008-5472.CAN-07-2538.
[15] Mardente S,Mari E,Consorti F,et al.HMGB1 induces the overexpression of miR-222 and miR-221 and increases growth and motility in papillary thyroid cancer cells[J].Oncol Rep,2012,28(6):2285-2289.doi:10.3892/or.2012.2058.
[16] Mardente S,Mari E,Massimi I,et al.HMGB1-Induced cross talk between PTEN and miRs 221/222 in thyroid cancer[J].Biomed Res Int,2015,2015:512027.doi:10.1155/2015/512027.
[17] Galardi S,Mercatelli N,Giorda E,et al.miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1[J].J Biol Chem,2007,282(32):23716-23724.doi:10.1074/jbc.M701805200.
[18] Goto Y,Kojima S,Nishikawa R,et al.MicroRNA expression signature of castration-resistant prostate cancer:the microRNA-221/222 cluster functions as a tumour suppressor and disease progression marker[J].Br J Cancer,2015,113(7):1055-1065.doi:10.1038/bjc.2015.300.
[19] Gits CMM,van Kuijk PF,Jonkers MBE,et al.MiR-17-92 and miR-221/222 cluster members target KIT and ETV1 in human gastrointestinal stromal tumours[J].Br J Cancer,2013,109(6):1625-1635.doi:10.1038/bjc.2013.483.
[20] Okamoto K,MiyoshiK,Murawaki Y.miR-29b,miR-205 and miR-221 enhance chemosensitivity to gemcitabine in HuH28 human cholangiocarcinoma cells[J].PLoS One,2013,8(10):e77623.doi:10.1371/journal.pone.0077623.
[21] Cerutti J,Trapasso F,Battaglia C,et al.Block of c-myc expression by antisense oligo nucleotides inhibits proliferation of human thyroid carcinoma cell lines[J].Clin Cancer Res,1996,2(1):119-126.
[22] He H,Jazdzewski K,Li W,et al.The role of microRNA genes in papillary thyroid carcinoma[J].Proc Natl Acad Sci U S A,2005,102(52):19075-19080.doi:10.1073/pnas.0509603102.
[23] Visone R,Pallante P,Vecchione A,et al.Specific microRNAs are downregulated in human thyroid anaplastic carcinomas[J].Oncogene,2007,26(54):7590-7595.doi:10.1038/sj.onc.1210564.
[24] Liu CG,Calin GA,Meloon B,et al.An oligonucleotide microchip for genome-wide microRNA pro ling in human and mouse tissues[J].Proc Natl Acad Sci U S A,2004,101(26):9740-9744.doi:10.1073/pnas.0403293101.
[25] Pallante P,Visone R,Ferracin M,et al.MicroRNA deregulationin human thyroid papillary carcinomas[J].Endocr Related Cancer,2006,13(2):497-508.doi:10.1677/erc.1.01209.
[26] Touré F,Zahm JM,Garnotel R,et al.Receptor for advanced glycation end-products (RAGE) modulates neutrophil adhesion and migration on glycoxidated extracellular matrix[J].Biochem J,2008,416(2):255-261.doi:10.1042/BJ20080054.
[27] Liu LT,Chang HC,Chiang LC,et al.Histone deacetylase inhibitor up-regulates RECK to inhibit MMP-2 activation and cancer cell invasion[J].Cancer Res,2003,63(12):3069-3072.
[28] Muniyan S,Ingersoll MA,.Batra SJ,et al.Cellular prostatic acid phosphatase,a PTEN-functional homologue in prostate epithelia,functions as a prostate-specific tumor suppressor[J].Biochim Biophys Acta,2014,1846(1):88-98.doi:10.1016/j.bbcan.2014.04.006.
[29] Zhang CZ,Han L,Zhang AL,et al.MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN[J].BMC Cancer,2010,10:367.doi:10.1186/1471-2407-10-367.
[30] Meng F,Henson R,Lang M,et al.Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines[J].Gastroenterology,2006,130(7):2113-2129.doi:10.1053/j.gastro.2006.02.057.
Expression of miR-221 in thyroid papillary carcinoma and its biological function
Methods: The expressions of miR-221 in 51 paired samples of PTC and adjacent tissue were detected by qPCR.In PTC K1 cells after transfection with miRNA random sequence (negative control group) or miR-221 inhibitor (miR-221 inhibitor group) with the untreated K1 cells as blank control,the proliferation was detected by MTT colorimetry,apoptosis and cell cycle were analyzed by flow cytometry,and invasion ability were determined by Transwell chamber.
Results: The relative expression level of miR-221 in PTC tissue was significantly higher than that in the adjacent tissue (P<0.05).In K1 cells of miR-221 inhibitor group compared with blank control group,the proliferative ability was significantly reduced; the apoptosis rate was significantly increased and the proportion of G0/G1 phase was increased while the proportion of G2/M phase decreased significantly; the invasion capability was significantly decreased,and all the differences had statistically significance (all P<0.05).there were no significant differences in above studied indexes between negative control group and blank control group (all P>0.05).
Conclusion: The expression of miR-221 is increased in PTC,which may probably affect the proliferation and invasion capability of PTC cells through regulating the cell cycle and apoptosis.So,miR-221 has a potential application value as a biomarker for early diagnosis and treatment of PTC.
Cite this article as:Zhou CY,Gao QJ,Tang R,et al.Expression of miR-221 in thyroid papillary carcinoma and its biological function[J].Chin J Gen Surg,2020,29(5):556-564.doi:10.7659/j.issn.1005-6947.2020.05.006